КОСМИЧЕСКИЙ ЗОНД
КОСМИЧЕСКИЙ ЗОНД, автоматический космический аппарат для прямого изучения объектов Солнечной системы и пространства между ними. Космические зонды проводят исследования планет, пролетая мимо них, двигаясь вокруг них по орбите, влетая в их атмосферу или достигая их поверхности. Прямые исследования далеких объектов с помощью приборов, установленных на космических зондах, дополняются наблюдениями с поверхности Земли и ее искусственных спутников. См. также АСТРОНОМИЯ И АСТРОФИЗИКА;РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ; РАДИОАСТРОНОМИЯ; ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ.Космические зонды могут сделать то, что недоступно приборам на Земле или на околоземной орбите: они могут получить изображения далеких объектов с близкого расстояния, измерить электромагнитные поля вокруг них, проделать прямой физический и химический анализ их атмосферы и поверхности, провести сейсмические исследования. В этой статье рассказано о развитии техники космического зондирования, а научные результаты описаны в статьях: СОЛНЕЧНАЯ СИСТЕМА; АСТЕРОИД;КОМЕТА.
ПРЕДЫСТОРИЯ КОСМИЧЕСКИХ ПОЛЕТОВ
Начиная с Луциана Самосатского (ок. 120–180) (Икаро-Мениппус иПравдивая история) люди мечтали добраться до Луны и узнать ее тайну. Что же касается планет, то сама мысль об экспедиции к ним могла возникнуть лишь после того, как стало ясно, что это не божества и не просто движущиеся огоньки на ночном небе, а тела, подобно Земле обращающиеся вокруг Солнца. Окончательно это выяснилось в эпоху И.Ньютона (1643–1727), объяснившего характер движения планет в Солнечной системе и указавшего принципиальную возможность путешествия от одной планеты к другой. Однако до середины 20 в. не было техническойвозможностиовладеть гигантской энергией, необходимой для преодоления земного тяготения.После произведений И.Кеплера Сон, или Посмертное сочинение об астрономии Луны (1634), Ф.Годвина Человек на Луне (1638) и С. де Бержерака Иной свет, или Государства и империи Луны (1657), экспедиции к Луне и планетам стали популярной литературной темой. К середине 20 в. тема космических путешествий прочно заняла место в беллетристике, на радио и в кино, вызывая у публики большой интерес.
Однако вплоть до этого времени все фантазии о космических путешествиях имели одну общую деталь – во всех экспедициях присутствовал человек. Сама идея об автоматических механизмах, способных исследовать Луну и планеты, просто не приходила никому в голову. Толчок воображению мог дать только соответствующий уровень техники, который в те годы еще не позволял мечтать о беспилотных космических аппаратах.
К концу Второй мировой войны многие ученые и инженеры поняли, что эра космических полетов приближается. Разработка мощных ракетных двигателей, легких и прочных материалов и конструкций, миниатюрных приборов и особенно развитие электроники сделали возможным практическое осуществление полетов вокруг Земли, к Луне и планетам.
СОЗДАНИЕ КОСМИЧЕСКОЙ ТЕХНИКИ
Удивительно, но для запуска полезной нагрузки на бесконечное расстояние от Земли (т.е. для ее разгона до второй космической скорости) нужно сообщить ей всего лишь вдвое большую энергию, чем для ее вывода на низкую околоземную орбиту. Поэтому первые космические зонды были запущены вскоре после первых искусственных спутников Земли. См. также ОРБИТА.Все же необходимая для запуска зонда дополнительная энергия требует более мощной ракеты-носителя при той же полезной нагрузке либо меньшей нагрузки при той же ракете. Ограничение веса полезной нагрузки всегда довлеет над разработчиками космических зондов. Обычно для достижения необходимой зонду скорости ракету снабжают дополнительной ступенью. Разработка мощных и надежных многоступенчатых ракет – это долгое и дорогое дело. Носители для космических зондов должны быть особенно надежными, поскольку для запуска обычно отводится небольшое временное окно, когда взаимное положение Земли и намеченной цели таково, что перелет требует минимальных затрат энергии. В другое время затраты энергии возрастают настолько, что экспедиция становится практически невозможной. При полетах на Луну оптимальная ситуация возникает раз в месяц, но при полетах к далеким планетам ее нужно ждать многие месяцы и даже годы.
Другой важный фактор – время перелета. Экспедиции к планетам длятся месяцы и годы. Поэтому все приборы зонда должны быть очень надежными, чтобы вблизи цели выполнить сложный комплекс исследований. Это создает нелегкие технические проблемы. Длительный перелет означает, что для питания бортовых систем электричеством нельзя использовать аккумуляторные батареи – необходим генератор, работающий без ограничений по времени. С этой целью при полетах к Луне и внутренним планетам – Меркурию, Венере и Марсу – применяют солнечные элементы. Но за орбитой Марса, вдали от Солнца, его свет слаб. Поэтому при полетах к Юпитеру и дальше используют изотопный генератор, вырабатывающий ток с помощью термоэлектрического преобразователя из тепла, выделяющегося при распаде радиоактивных изотопов, например плутония-238.
Слежение за космическими зондами и управление ими значительно сложнее, чем спутниками. Для определения точного положения аппарата и передачи на борт команд управления, а также для приема с его борта данных необходимы мощные передатчики и большие антенны на Земле и на самом зонде. Для этих целей были созданы глобальные системы космического радиосопровождения. Например, Сеть дальней космической связи Национального управления по аэронавтике и исследованию космического пространства (НАСА) США, разработанная в Лаборатории реактивного движения (Пасадена, шт. Калифорния), служит для управления космическими зондами и объединяет станции в Голдстоуне (Калифорния), Тидбинбелла (вблизи Канберры, Австралия) и Робледо де Чевела (вблизи Мадрида, Испания). Для связи с космическими зондами используют также станции в Дармштадте (Германия), Усюде (Япония) и Евпатории (Украина).
Ограниченность скорости света приводит к временной задержке при обмене сигналами между центрами управления на Земле и космическими зондами, достигающей нескольких часов при полетах во внешние области Солнечной системы и делающей невозможным управление зондом в реальном времени. Поэтому команды передаются заранее, и при возникновении неожиданной ситуации уже бывает поздно что-либо изменить. На этот случай зонд должен быть снабжен мощным бортовым компьютером, сравнивающим реальную ситуацию с ожидаемой и вносящим коррективы в команды.
В то же время в процессе перелета зонды находятся в более мягкихусловиях, чем спутники Земли, которые регулярно переходят с освещенной Солнцем на теневую сторону орбиты, испытывая при этом сильные колебания температуры и тепловые деформации, снижающиенадежность работы аппаратуры.
ПОЛЕТЫ К ЛУНЕ
«Пионер».
Разработка первых пяти космических зондов США для пролета мимо Луны и для выхода на окололунную орбиту велась в Управлении перспективных исследований Министерства обороны, а затем была передана в только что образованное НАСА. Скромные возможности носителей того времени (баллистические ракеты среднего радиуса действия «Тор» и «Юпитер») ограничивали полезный груз для полетов к Луне массой от 6 до 40 кг. Постоянная ориентация продольной оси зондов в пространстве относительно звезд поддерживалась их вращением вокруг этой оси.Первая попытка («Пионер-0», запущен 17 августа 1958) закончилась взрывом носителя на 77-й секунде полета. Первым зондом США, достигшим второй космической скорости, был «Пионер-4», запущенный 3 марта 1959 и прошедший мимо Луны на расстоянии 60 тыс. км – слишком далеко для получения хороших фотографий. Однако он помог уточнить протяженность открытых незадолго до этого радиационных поясов Ван Аллена, окружающих Землю.
«Луна».
Советский Союз тоже стремился направить зонд к Луне. После четырех неудачных попыток в 1958 2 января 1959 состоялся запуск «Луны-1», впервые достигшей второй космической скорости и прошедшей мимо Луны всего в 6000 км. 13 сентября 1959 «Луна-2» попала в Луну, ознаменовав первый прямой контакт человечества с иным небесным телом. Запущенный 4 октября 1959 зонд «Луна-3» передал по радио первые фотографии обратной стороны Луны, которая никогда не видна с Земли. В процессе фотографирования «Луна-3» очень точно сориентировалась по звездам.Как и «Пионеры», первые зонды «Луна» питались электричеством от аккумуляторных батарей, что ограничивало срок их активной жизни. Но одним качеством они существенно отличались от «Пионеров». Мощные советские носители, выводящие на орбиту значительно больший вес, позволили советским инженерам разместить приборы зонда в герметичной оболочке, заполненной нормальным атмосферным воздухом. При этом, правда, небольшая утечка воздуха могла стать гибельной для аппарата. Оборудование на борту «Пионеров» функционировало в условиях вакуума. Чтобы добиться этого, пришлось решить сложные инженерные проблемы, но зато был сэкономлен вес и созданы приборы для работы в открытом космосе.
«Рейнджер».
Американские исследования Луны автоматическими станциями активизировались, когда президент Дж.Кеннеди объявил, что высадка человека на Луну состоится до 1970. Для изучения поверхности, на которую должен был опуститься корабль «Аполлон», НАСА предприняло трехэтапную программу.Первыми представителями нового поколения американских лунных зондов стали аппараты «Рейнджер». Два первых «Рейнджера» были выведены для испытания на высокую околоземную орбиту. Следующие три зонда предназначались для доставки на лунную поверхность сейсмографов; при этом с помощью твердотопливных тормозных двигателей скорость сближения зонда с поверхностью должна была уменьшиться до нескольких сотен км/ч. Последние зонды предназначались для получения детальных изображений поверхности перед тем, как они врежутся в нее на большой скорости. Таким образом, зонды «Рейнджер» имели различную конструкцию, но все они питались от солнечных батарей, были стабилизированы по трем осям и способны осуществлять тонкую коррекцию ориентации и траектории полета.
Способность зонда выполнять необходимые операции, кроме прочего, зависит от возможности поддерживать заданную ориентацию. У спутников на околоземной орбите для этого датчики могут фиксировать земной горизонт и определять по нему вертикальное и горизонтальное направления. Но зонд в открытом космосе для ориентации может использовать только небесные светила, как минимум – два, причем желательно, чтобы угол на небе между ними был ок. 90°. Для «Рейнджеров» и многих последующих американских зондов основным светилом для ориентации было выбрано Солнце, а вторым – Канопус, звезда южного неба, невидимая на наших северных широтах. Ее избрали потому, что это вторая по яркости звезда небосвода, и к тому же расположенная вблизи полюса эклиптики. Для поддержания или изменения ориентации использовались маленькие сопла, выбрасывающие строго контролируемое количество газообразного азота и действующие как миниатюрные ракетные двигатели. Во время маневра, когда датчики Солнца и Канопуса теряли свои светила из виду, специальные гироскопы сохраняли нужную ориентацию и указывали необходимую коррекцию, что значительно упрощало затем поиск двух опорных светил.
Поскольку «Рейнджеры» могли сохранять ориентацию, они имели остронаправленную антенну, позволявшую эффективно передавать данные на Землю. Такая способность особенно важна для зондов, исследующих далекие области Солнечной системы. Первые шесть «Рейнджеров» постигла неудача из-за отказов носителя или самого аппарата. Но седьмой, восьмой и девятый сработали нормально, попав в Луну 31 июля 1964, 20 февраля 1965 и 24 марта 1965 и передав на Землю изображения лунной поверхности, в тысячи раз превосходящие то, что прежде было получено с помощью наземных телескопов. На них не обнаружилось ничего такого, что сделало бы невозможным прилунение человека.
«Сервейор».
Следующим шагом НАСА по изучению Луны стала программа «Сервейор», первоначально включавшая два типа экспериментов: мягкую посадку зонда на поверхность Луны и ее детальное фотографирование с окололунной орбиты.Для управляемого спуска аппарат «Сервейор», приближаясь к Луне, переходил от ориентации по Солнцу и Канопусу к ориентации по лунной поверхности. Бортовой радар непрерывно измерял высоту и скорость спуска, чтобы перед самым касанием включить мощный твердотопливный двигатель, который почти полностью гасил скорость. В заключение небольшие регулируемые жидкостные двигатели обеспечивали мягкую посадку на грунт.
«Сервейор-1» мягко опустился в Океане Бурь 2 июня 1966 и передал фотографии и результаты измерений на Землю. Четыре (3-й, 5-й, 6-й и 7-й) из шести следующих «Сервейоров» также успешно опустились (20 апреля, 11 сентября, 10 ноября 1967 и 10 января 1968) и окончательно доказали, что для посадок на Луну экспедиций «Аполлонов» путь открыт.
«Лунар орбитер».
Для выбора мест посадки кораблей «Аполлон» НАСА срочно нуждалось в качественных изображениях больших областей лунной поверхности. Когда орбитальная программа «Сервейор» по разным причинам остановилась, НАСА начало программу с прозаическим названием «Лунар орбитер», зонды которой должны были фотографировать поверхность Луны на пленку и проявляли ее на борту. Затем негативы сканировались лучом света, и по радио изображение передавалось на Землю. Все пять аппаратов «Лунар орбитер» (запущены 10 августа и 6 ноября 1966, 5 февраля, 4 мая и 1 августа 1967) сработали нормально, дав первое детальное изображение почти всей поверхности Луны.
Другие полеты к Луне.
После нескольких неудачных попыток Советский Союз посадил на Луну 3 февраля 1966 «Луну-9» и передал (за четыре месяца до «Сервейора-1») несколько панорам ее поверхности. Однако «Луна-9» представляла собой жестко садящийся аппарат с малым ресурсом и меньшими возможностями, чем «Сервейор». «Луна-10» 3 апреля 1966 стала первым спутником Луны. Затем еще множество посадочных и орбитальных аппаратов было направлено к Луне в период с 1966 по 1976.Для подготовки пилотируемых полетов на Луну Советский Союз запустил серию беспилотных кораблей («Зонд-5, -6, -7 и -8», запущены 14 сентября и 10 ноября 1968, 8 августа 1969 и 20 октября 1970), облетевших Луну и благополучно вернувшихся на Землю. Затем были доставлены на Луну автоматические движущиеся аппараты («Луноход-1 и -2», сели 17 ноября 1970 и 15 января 1973) и станции («Луна-16, -20 и -24», сели 20 сентября 1970, 21 февраля 1972 и 18 августа 1976) для доставки образцов лунного грунта на Землю. Однако эти достижения померкли перед пилотируемыми полетами на Луну «Аполлонов» (1969–1972). См. такжеКОСМИЧЕСКИЕ ПОЛЕТЫ ПИЛОТИРУЕМЫЕ.
«Клементина».
В совместном проекте «Клементина» НАСА и Организация стратегической оборонной инициативы (СОИ) использовали оставшуюся со времен холодной войны ракету «Титан» и не находившее применения оборудование. Запущенный 25 января 1994 аппарат несколько месяцев работал на орбите вокруг Луны, получая с помощью четырех фотокамер изображения ее поверхности в различных диапазонах спектра, от ультрафиолетового до инфракрасного.«Лунар проспектор».
Для исследования состава поверхности Луны, а также ее магнитного и гравитационного полей 7 января 1998 США вывели на окололунную орбиту легкий спутник «Лунар проспектор», который в середине 1999 упал на Луну.МЕРКУРИЙ
Единственным зондом, исследовавшим ближайшую к Солнцу планету Меркурий, был «Маринер-10», совершивший три полета (29 марта 1974, 21 сентября 1974 и 16 марта 1975) к этой планете. Вначале зонд прошел мимо Венеры, впервые совершив гравитационный маневр, т.е. использовал ее притяжение, чтобы изменить свою орбиту и достичь Меркурия.Меркурий оказался безвоздушным, покрытым кратерами телом, очень похожим на Луну. Исследование ближайшей к Солнцу планеты было технически сложным: тепловой поток там в 6 раз больше, чем у Земли, поэтому температура на Меркурии достаточна для плавления олова, свинца и цинка. Зонд был прикрыт от Солнца экраном, а панели солнечных батарей были наклонены под косым углом к солнечным лучам.
Меркурий делает три оборота вокруг оси в течение двух орбитальных периодов, а каждый его оборот вокруг Солнца длится 88 сут. Поэтому одни солнечные сутки на нем продолжаются два меркурианских года, или 176 земных суток. К сожалению, «Маринер-10» совершал подлеты к Меркурию точно через такие же интервалы времени и каждый раз мог фотографировать лишь одно и то же освещенное Солнцем полушарие планеты. Недавние исследования поверхности Меркурия с помощью наземных радаров показали, что в его полярных областях на дне глубоких кратеров, куда никогда не попадает солнечный свет, могут быть залежи льда, точь-в-точь как на Луне. Это еще одна причина, требующая новых экспедиций к Меркурию.
ВЕНЕРА
Венера, ближайшая от Земли планета по направлению к Солнцу, была очевидной целью для первых космических зондов. Привлекали сравнительно небольшое расстояние и время перелета всего в несколько месяцев. К тому же покрытая облаками планета хранила от астрономов множество секретов.Пролеты.
Из-за трудностей с разработкой последней ступени носителя первые планетные зонды НАСА были простыми и легкими, основанными на лунном зонде «Рейнджер»; их выводила ракета «Атлас-Аджена». Зонд «Маринер-2» 14 декабря 1962 впервые прошел мимо Венеры и с помощью бортовой радиоаппаратуры подтвердил высокую температуру поверхности планеты, на что ранее указывали наземные радионаблюдения. «Маринер-5» прошел мимо Венеры 19 октября 1967, а «Маринер-10» – 5 февраля 1974.Вход в атмосферу и посадка.
Мягкая посадка на Венеру проходит в несколько этапов. Обычно влетающий в атмосферу планеты аппарат защищен тепловым экраном. Когда от торможения в атмосфере его скорость снижается до нескольких сотен километров в час, экран сбрасывается как лишний груз и раскрывается парашют. Вблизи поверхности парашют также сбрасывается, поскольку в очень плотных нижних слоях атмосферы для торможения уже достаточно небольшого аэродинамического щитка. Сохранить работоспособность аппарата на поверхности Венеры даже в течение одного часа не так-то просто, поскольку температура там ок. 500° С, а давление почти в 100 раз выше, чем у поверхности Земли. Поэтому приборы должны быть защищены прочной теплоизоляционной оболочкой.Советский зонд «Венера-3», осуществив первый в мире перелет на другую планету, попал на Венеру 1 марта 1966, но радиоконтакт с ним был потерян незадолго до встречи с планетой. «Венера-4» достигла планеты 18 октября 1967 и была раздавлена ее атмосферой еще до касания поверхности, подтвердив измерениями высокие температуру и давление у поверхности. «Венера-7» достигла поверхности Венеры 15 декабря 1970 и еще 23 мин посылала данные на Землю, пока не наступил перегрев. Зонды «Венера-9 и -10» состояли из посадочного и орбитального аппаратов. Их посадочные аппараты опустились на поверхность 22 и 25 октября 1975 и передали изображения пустынного и каменистого окружающего ландшафта. Следующие «Венеры» также передавали панорамы мест посадки, а «Венера-13 и -14» впервые произвели анализ образцов грунта.
Американский зонд «Пионер – Венера-2» достиг планеты 9 декабря 1978, опустив в разных ее местах 4 посадочных аппарата, один из которых передавал данные с поверхности более часа. Затем были советские зонды «Вега-1 и -2», в первую очередь предназначенные для исследования кометы Галлея, приблизиться к которой они смогли после гравитационного маневра в окрестности Венеры. При прохождении мимо планеты (11 и 15 июня 1985) они сбросили на Венеру спускаемые аппараты, севшие на поверхность и проанализировавшие пробы грунта. К тому же каждый из аппаратов выпустил в атмосферу Венеры французский аэростатный зонд с баллоном, наполненным гелием; плавая в воздушных течениях Венеры несколько дней, они передавали на Землю данные об облаках, скорости ветра и параметрах атмосферы.
Радиолокационные исследования с орбиты.
Поскольку Венера полностью закрыта облаками, наблюдения в оптический телескоп не дают возможности изучать ее поверхность. Однако с начала 1960-х годов наземные радарные исследования указывали, что поверхность Венеры весьма разнообразна. Поскольку спускаемые аппараты передают изображение лишь небольшого участка вокруг места посадки, возникла идея радиолокационного исследовании всей планеты с низкой орбиты. Их начал американский зонд «Пионер – Венера-1», вышедший на орбиту вокруг Венеры 4 декабря 1978 и с помощью бортового радара получивший карту части поверхности с разрешением (размер мельчайших деталей) ок. 80 км. Затем советские орбитальные зонды «Венера-15 и -16» начали 10 и 14 октября 1983 радарное изучение больших областей Венеры; на полученных ими с разрешением 1,5 км картах видны сложные структуры поверхности, многие из которых не известны на Земле. Зонд США «Магеллан», выйдя на орбиту вокруг Венеры 10 августа 1990, получил радарные карты почти всей ее поверхности с разрешением, доходящим до 100 м.МАРС
Полет к Марсу более сложен, чем к Венере: перелет длится дольше, большее расстояние усложняет связь, а удаленность от Солнца требует большей площади солнечных батарей.Пролеты.
Как и в случае с Венерой, из-за трудностей с созданием носителей НАСА вынуждено было начать изучение Марса легкими зондам