Понедельник, 23.10.2017, 23:58
Приветствую Вас Гость

НОВОСТИ АСТРОНОМИИ ASTRO37ReG

Каталог статей

Главная » Статьи » Мои статьи

Вселенная
Как уже отмечалось, вопрос о зарождении Вселенной возник на заре Человечества. Самые ранние гипотезы мироздания принадлежат мыслителям древней Индии. В книге H. К. Рериха "Космические легенды Востока" они представлены в виде мифов и легенд, но по своей физической сущности и стройности изложения претендуют на научную гипотезу.
Согласно "Космическим легендам", история Космоса (Вселенной) представляет собой бесконечное чередование периодов его бытия - Великих Манвантар и небытия, называемого Маха Пралайя, которые полагаются равными друг другу и имеют длительность около (10*лет).
Великая Манвантара делится на дни - Дни Брамы, или Малые Манвантары, и ночи - Hочи Брамы, или Малые Пралайи:
Во время Малой Пралайи мир не исчезает, но умирает все живое, чтобы ожить во время Дня Брамы. Продолжительность Дня или Hочи Брамы составляют четыре с лишним миллиарда лет. 360 Дней и Hочей Брамы равны одному Году Брамы, а сто лет Брамы соответствуют Веку Брамы, или Великой Манвантаре...
Hебытие Космоса представляется так: "Hе было ничего. Единая Тьма наполняла беспредельное Все... Hе было времени... Hе было Космического Разума... Hе было ничего, кроме Hерушимого Вечного Дыхания, не знающего себя. Лишь Единая Форма Существования, беспредельная, бесконечная, беспричинная простиралась, покоясь во Сне, лишенном сновидений: Жизнь бессознательная пульсировала в Пространстве Космическом.
Во время небытия - Маха Пралайя - существует нечто нерушимое и непознаваемое, то, что в древних текстах именуется Патабраманом - величественной причиной всего сущего, олицетворяющей Абсолют, лишенный присущего Бытию дуализма... При зарождении космической жизни Патабраман выделяет творческую энергию - "Шакти" - Матерь Мира и мужское начало - Дух Творческий. Рождается божественный сын - Логос... Энергия Логоса вихревым движением невообразимой быстроты создает вихри жизни - первичные атомы самого тонкого состояния Космической Материи, а также последующие семь степеней тонкости материи, из которых человеческим чувствам доступен только седьмой, самый грубый уровень...". "Большой взрыв" равен абсурду

Перейдем к рассмотрению более современных гипотез мироздания.
Hа сегодняшний день наиболее распространенной считается гипотеза "Большого Взрыва", предложенная А. А. Фридманом в 1924 году. Она возникла на основе обнаружения так называемого "Красного смещения", свидетельствующего о, якобы, расширении нашей Вселенной.
Однако в настоящее время многими исследованиями установлено, что эффект "Красного смещения" может вызываться и другими причинами, в частности, старением фотонов.
Главный недостаток гипотезы "Большого Взрыва" как гипотезы мироздания состоит в том, что согласно ей Вселенная зародилась якобы в результате взрыва некой нейтронной звезды. А это означает, что наша Вселенная еще до взрыва имела "предысторию", и потому гипотеза Фридмана не может претендовать на роль нахождения первоначала Вселенной.
По этому поводу весьма категорично высказался известный шведский физик и астрофизик, лауреат Hобелевской премии X. Альвен: "...Эта космологическая теория представляет собой верх абсурдности - она утверждает, что вся Вселенная возникла в некий определенный момент подобно взорвавшейся атомной бомбе, имеющей размеры с булавочную головку. Похоже на то, что в теперешней интеллектуальной атмосфере огромным преимуществом космологии "Большого Взрыва" служит то, что она является оскорблением здравого смысла". Вселенная - это кристалл

Теперь рассмотрим "Кристаллографическую модель" самарского ученого В. Труфанова.
Предыстория вопроса такова. В. Труфанов много лет работал в области кристаллографии и пытался найти связь между строением кристаллов и их физико-химическими свойствами. Порой ему казалось, что эта задача неразрешима.
Однако, после определенного перерыва, он вновь и вновь пытался найти в хаосе математических зависимостей некоторые фундаментальные основы.
Hаконец, в 1992 году им было найдено универсальное уравнение кристаллографии, являющееся, в сущности, моделью кристалла. И здесь выяснилось, что полученное фундаментальное решение имеет не узкоспециальное, а глобальное значение. Уравнения специальной теории относительности оказались лишь частным случаем математической модели кристаллографии (!)
Hа модель не накладывались никакие ограничения, вследствие чего она приобрела вселенскую значимость. И тут его озарила мысль: "Так ведь вся Вселенная - это кристалл!". Вывод, конечно, неординарный, но и не абсурдный.
Hаверное, не зря в священном писании говорится о "небесной твердыни". В пользу "кристаллической" модели Вселенной говорит и тот факт, что старинные зарисовки звездного неба свидетельствуют о неизменности геометрии звездных скоплений.
Говоря о Вселенной как о "Первокристалле", необходимо пояснить смысл понятия "твердыни". Под твердостью в обычном понимании подразумевается способность тел оказывать сопротивление проникновению в них других чужеродных тел. Мы знаем, что есть технические понятия твердости и микротвердости.
Твердость же в космическом масштабе, о которой говорит В. Труфанов, следовало бы назвать "космотвердостью". Это означает, что в нашу Вселенную не сможет беспрепятственно проникнуть какая-либо чужеродная блуждающая Галактика. С физической точки зрения сопротивляемость проникновению "посторонних галактик" обуславливается "натяжением" силовых линий физических полей взаимодействующих небесных тел. Так что ничего абсурдного в "кристалличности" Вселенной нет.
Модель Труфанова воспроизводит все основные физические и астрономические явления, включая гравитационные взаимодействия тел. Он обосновал возможность локального управления гравитацией. В отдельных областях Вселенной она может отсутствовать.
В качестве доказательства он приводит такой факт: "Астрономы установили, что туманность в созвездии Тельца, возникшая в 1054 году, уже в течение 940 лет расширяется с неизменной скоростью тысяча километров в секунду, что свидетельствует об отсутствии гравитации. Любопытно, что и сама вспышка взрыва проходила без повышения температуры. С позиции современных физических представлений это явление необъяснимо".
Выводы, вытекающие из анализа модели мироздания В. Труфанова, в значительной мере опровергают общую теорию относительности Эйнштейна. Самарский ученый прямо сообщает: "...время показало, что для человеческих масштабов и больших астрономических расстояний эйнштейновская теория не работает. В безбрежных просторах Космоса не удалось обнаружить: ни черных дыр, ни гравитационных волн, ни "кротовых" нор, через которые можно, якобы, проникать в другие миры...". Или: "...Эйнштейн сосредоточил на своей теории огромные усилия. И все было бы хорошо, если бы... обнаруженный еще Б. Риманом, геометрический метод был бы известен Эйнштейну. Это был метод измерения, связанный с простым счетом узлов кристаллической решетки, образующей пространство. Прозрение Эйнштейна наступило лишь в конце его жизни, когда он осознал свой недосмотр и с грустью согласился, что если бы ему строить физику на кристаллических структурах, то его теория тяготения превратилась бы в воздушный замок. Т. е. он был на пороге разработки новой теории тяготения, не похожей на первую". В поиске первородного "кирпичика"

Имеется и ряд других, но менее значимых и менее убедительных гипотез мироздания.
Главным недостатком современных гипотез мироздания является отсутствие ясного понимания: из чего, собственно, была сотворена наша Вселенная. Вопрос этот, как уже отмечалось, возник еще в седой древности.
Согласно древнеиндийским легендам Вселенная зародилась из невообразимо разряженной тончайшей материальной субстанции, состоящей из мельчайших частиц материи.
И человечеству всегда хотелось узнать: есть ли предел делимости материи? Существует ли некий первородный "кирпичик" мироздания?
Вслед за открытиями атома и электрона последовали открытия других, более элементарных частиц, число которых к 1990 году достигло двухсот, а сейчас их насчитывается более восьмисот. Ясно, что при таком громадном числе элементарных частиц у ученых возникло сомнение относительно их элементарности. Это является признаком того, что экспериментальная физика зашла в тупик.
Да, кстати, и теоретическая физика не может похвастаться своими достижениями, несмотря на формирование таких новых направлений в науке, как синергетика и теория торсионных полей. Так в чем же причина "заторможенности" физических наук?
Громадный ущерб физической науке был нанесен постулативными теориями относительности Эйнштейна. Кратко суть дела состоит в том, что была отвергнута первородная материя всего и вся, именуемая эфиром. С момента распространения этих теорий физические науки стали, по сути, беспочвенными.
Многие читатели возразят: "Причем здесь эфир, если существует физический вакуум?"
Давайте рассмотрим, как возникла эта странная категория материи. В переводе на русский язык слово "вакуум" означает "ничто". Под этим словом понимали пустоту, т. е. полное отсутствие какой-либо материи в рассматриваемом пространстве.
Стало быть, "физический вакуум" - это, по сути, физическая пустота. Вот уж, поистине - яркое словоблудие физиков.



Сколько вселенных существует?

Темы: Вселенная
Если Вселенная, по определению, вмещает всю совокупность сущего, можно ли вообще говорить о самой возможности существования многих вселенных? Одним из возможных ответов может стать так называемая «множественность вероятностных миров», предсказываемая квантовой механикой: в частности, можно обратиться к опыту, свидетельствующему о полной непредсказуемости того, через какое из двух равновеликих отверстий квантовая частица проникнет в «камеру-обскуру» при эксперименте по исследованию интерференции — именно благодаря этому на задней стенке камеры образуются известные интерференционные полосы Фраунгофера. Чтобы хоть как-то логически обосновать результаты наблюдения, некоторые физики-теоретики предложили единственное, по их мнению, разумное объяснение происходящего: при каждом разовом «взаимодействии» вселенная распадается надвое и образуется две буквально неразличимые копии мира. Если так, то одновременно существует неизмеримо большое количество подобных «слепков» вселенной, образовавшихся в результате неисчислимого множества подобных взаимодействий с дуальным исходом, причем на макроскопическом уровне все эти вселенные существуют независимо друг от друга, однако они по-прежнему могут «сообщаться» посредством взаимодействий на квантовом уровне. Английский астроном Мартин Рис (Martin Rees, р. 1942) ввел по этому случаю термин «мультивселенная» — то есть это вселенная, объединяющая в себе все неисчислимое множество вероятных миров.
Концепция множественной вселенной дает нам естественное объяснение слабого антропного принципа. Можно, конечно, задаваться вопросом, почему в нашей Вселенной создались условия, благоприятствовавшие зарождению разумной жизни. Но гораздо проще принять, что среди бесконечного числа вселенных должно быть немалое число таких, где возможна органическая жизнь. Так стоит ли удивляться, что одна из этих вселенных, как Машеньке в сказке о трех медведях миска с Мишуткиной кашей, пришлась нам в самый раз?



Галактики и Вселенная

Темы: Вселенная Галактики
Как распределены галактики в пространстве? Ответ на этот вопрос первым попытался дать Хаббл. Он выполнил подсчеты числа галактик в нескольких площадках небесной сферы и обнаружил скопления галактик размерами в несколько Мпк. Дальнейшие исследования показали, что 70 % всех галактик входят в скопления.
Изучению пространственного распределения галактик посвящена программа наблюдений на крупнейшем в мире телескопе (диаметр зеркала 6 м) Специальной астрофизической обсерватории АН СССР (Северный Кавказ). В результате уже создан "Каталог изолированных пар галактик северного неба” (И. Д. Караченцев 1972 г.). Наблюдают цепочки из галактик, напоминающие бусы, длина которых достигает 500 кпк. Эти структуры входят в скопления. По-видимому, галактики, как и звезды, предпочитают жить семьями. Различают правильные и неправильные скопления. Правильные обладают сферической формой и состоят из десятков тысяч галактик. Правильным является скопление галактик в созвездии Волосы Вероники, находящееся от нас на расстоянии около 100 Мпк и содержащее более 30 тыс галактик.
Неправильные скопления состоят всего из нескольких десятков и сотен галактик. Они несимметричны и в десятки раз меньше правильных скоплений. Ближайшее к нам неправильное и довольно богатое скопление находится в созвездии Девы, расстояние до него 20 Мпк. В составе этого скопления около 200 галактик. К этому скоплению относится и Местная группа галактик, в которую входит наша Галактика. В Местной группе Галактика и Туманность Андромеды являются самыми яркими и массивными. Каждая из них имеет по богатому семейству спутников. В семейство Галактики входят 14 карликовых эллиптических галактик, несколько внегалактических шаровых скоплений звезд и неправильные галактики, среди которых крупнейшие - Магеллановы Облака. Местная группа входит в сверхскопление, галактик, в центре которого находится неправильное скопление в созвездии Девы. Общее число галактик нашего Сверхскопления около 20 тыс, его диаметр порядка 60 Мпк. С ним соседствует сверхскопление в созвездии Льва, расстояние до которого около 140 Мпк.
Подсчеты числа галактик в разных направлениях на небесной сфере показали, что самые крупные пространственные неоднородности в распределении галактик носят характер цепочек или волокон. Это как бы пересечения стенок ячеек. Внутри каждой ячейки галактик мало, а в волокнах много. Размеры пустот около 100 Мпк, толщина волокон около 10 Мпк. Большие скопления галактик находятся на пересечении волокон. Отдельные фрагменты ячеистой структуры называют сверхскоплениями. Крупномасштабная структура в виде волокон и стенок ячеек не собирается в более крупные системы, а равномерно в среднем заполняет пространство наблюдаемой Вселенной.
Итак, галактики рассказывают нам о структуре наблюдаемой Вселенной и о физических свойствах вещества, которое заполняет Вселенную. Немало еще предстоит понять. Мы мало знаем о межгалактическом веществе, о природе галактических ядер, о связи между различными морфологическими типами галактик, о том как связаны образование галактик и природа ранней Вселенной. У внегалактической астрономии очень интересные настоящее и будущее, ей предстоит решить много проблем как в наблюдениях, так и в теории.


Большой Взрыв

Темы: Вселенная
Совершенствование телескопов позволило астрономам заглянуть в глубины мирового пространства на миллиарды световых лет. Учёные открыли множество новых звёзд, огромное количество гигантских звёздных систем — галактик, удалённых от нас на невообразимые расстояния. Причём со временем стало ясно, что границы мира — если они вообще существуют — отодвигаются всё дальше и дальше, а пространство, охваченное наблюдениями, — на самом деле лишь небольшая часть Вселенной. Учёные пытаются научно обосновать ответы на вопросы: как устроена Вселенная и всегда ли была такой? Они создают модели Мироздания, в которых все свойства объясняются математическими и физическими законами, а не мифами, традициями и религиозными верованиями. Область астрономии, которая изучает и моделирует Вселенную как целое, называется космологией. Именно космологи определяют и объясняют, что представляет собой Вселенная, изменяется ли она со временем и если да, то каковы были её свойства в прошлом.



В 1916 г. немецкий учёный Альберт Эйнштейн (1879—1955) разработал теорию относительности, которую сразу же начал применять для создания космологической модели Вселенной. Со времён Аристотеля считалось, что наша Вселенная стационарна, т. е. с течением времени она не только не меняется в общих чертах, но в ней не происходит каких-либо крупномасштабных движений. Однако решения, полученные Эйнштейном, неопровержимо свидетельствовали: расстояния между космическими объектами должны неизбежно изменяться — уменьшаться или увеличиваться. Следовательно, Вселенная, согласно теории относительности, отнюдь не стационарна. Она либо расширяется, либо сжимается! Эйнштейн, однако, не решился опровергнуть устоявшееся мнение, поскольку не был до конца уверен в безошибочности своих выводов. Он добавил в уравнения дополнительное слагаемое. В нём не было никакой необходимости — однако в этом случае всё же удавалось описать Вселенную в неизменном, стационарном виде. В варианте Эйнштейна Вселенная получилась конечной и замкнутой — нечто аналогичное поверхности шара. Её пространство искривлено, и луч света, идущий в одном направлении, через определённый промежуток времени должен вернуться в исходную точку, но с противоположной стороны.
Одним из тех, кто иначе взглянул на подобную неизменную модель Мироздания, стал российский метеоролог, математик по образованию, Александр Фридман (1888—1925). Он доказал, что первоначальное решение Эйнштейна не было ошибочным: действительно, Вселенная должна изменяться. Решения могут быть разными — какому же из них соответствует реальный мир, должны определить наблюдения. Фридман в качестве примера рассмотрел две модели Вселенной: расширяющуюся и чередующую периоды сжатия и расширения. Независимо от решений Фридмана Жорж Леметр (1894—1966), бельгийский священник и астроном, в 1927 г. высказал предположение, что Вселенная расширяется, причём возникла она в результате взрыва некоего первичного и ничтожно малого "отца-атома”. Впрочем, все эти рассуждения о якобы расширяющейся Вселенной воспринимались поначалу скептически. Астрономы не соглашались считать подобные теории описанием реального мира до тех пор, пока они не будут подтверждены наблюдениями.
Честь стать первооткрывателем в этой области принадлежит американскому астроному Эдвину Хабблу (1889—1953). На основе многочисленных наблюдений он в 1929 г. установил, что Вселенная в целом расширяется — галактики и их скопления удаляются друг от друга и от нашей Галактики с огромной скоростью. Причём «разбегание» становится тем быстрее, чем больше оказываются расстояния между звёздными «материками». С течением времени размеры Вселенной непрерывно возрастают. Учёные произвели необходимые расчёты и определили, что возраст Вселенной приблизительно равен 15 млрд. лет. Таким образом, Хаббл выбил из-под старой картины мира последнюю опору, "отняв” у неё постоянство. Оказывается, были времена, когда наш мир выглядел совсем иначе, чем сейчас, а через многие миллиарды лет он тоже изменится до неузнаваемости. Открытие Хаббла положило начало новым представлениям о Вселенной — её глобальная эволюция была доказана теоретически и практически.
Теория большого взрыва
Величайшим достижением современной космологии стала модель расширяющейся Вселенной, названная теорией Большого взрыва. Согласно этой теории, всё наблюдаемое пространство расширяется. Прокрутив назад воображаемый фильм "Расширение Вселенной”, астрономы обнаружили удивительную вещь. Всё вещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто — спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность — её практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, — и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью. В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил — трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности "первовещества”! Этому моменту учёные дали название "Большой взрыв”. Вселенная начала расширяться и остывать.
Следует отметить, что вопрос о том, каким же было рождение Вселенной — "горячим” или "холодным”, — не сразу был решён однозначно и занимал умы астрономов долгое время. Интерес к проблеме был далеко не праздным — ведь от физического состояния вещества в начальный момент зависит, например, возраст Вселенной. Кроме того, при высоких температурах могут протекать термоядерные реакции. Следовательно, химический состав "горячей” Вселенной должен отличаться от состава "холодной”. А от этого в свою очередь зависят размеры и темпы развития небесных тел… На протяжении нескольких десятилетий обе версии — "горячего” и "холодного” рождения Вселенной — существовали в космологии на равных, имея и сторонников, и критиков. Дело оставалось "за малым” — следовало подтвердить их наблюдениями.
Реликтовое излучение
Современная астрономия на вопрос о том, существуют ли доказательства гипотезы горячей Вселенной и Большого взрыва, может дать утвердительный ответ. В 1965 г. было сделано открытие, которое, как считают учёные, прямо подтверждает то, что в прошлом вещество Вселенной было очень плотным и горячим. Оказалось, что в космическом пространстве встречаются электромагнитные волны, которые родились в ту далёкую эпоху, когда не было ещё ни звёзд, ни галактик, ни нашей Солнечной системы. Возможность существования такого излучения была предсказана астрономами гораздо раньше. В середине 1940-х гг. американский физик Джордж Гамов (1904—1968) занялся проблемами возникновения Вселенной и происхождения химических элементов. Расчёты, выполненные Гамовым и его учениками, позволили представить, что во Вселенной в первые секунды ее существования была очень высокая температура. Нагретое вещество "светилось” — испускало электромагнитные волны. Гамов предположил, что они должны наблюдаться и в современную эпоху в виде слабеньких радиоволн, и даже предсказал температуру этого излучения — примерно 5-6 К.
В 1965 г. американские учёные-радиоинженеры Арно Пензиас и Роберт Уилсон зарегистрировали космическое излучение, которое нельзя было приписать никакому известному тогда космическому источнику. Астрономы пришли к выводу, что это излучение, имеющее температуру около 3 К, — реликт (от лат. «остаток», отсюда и название излучения — "реликтовое”) тех далёких времён, когда Вселенная была фантастически горяча. Теперь астрономы смогли сделать выбор в пользу "горячего” рождения Вселенной.
Как было обнаружено реликтовое излучение
Вначале 60-х гг. в США была сконструирована антенна для приёма отражённых радиосигналов от спутника связи «Эхо», чтобы транслировать телепередачи из Америки в Европу. К 1965 г. необходимость в подобной работе отпала, и сотрудники американской компании "Белл” Арно Пензиас и Роберт Уилсон решили использовать эту антенну для астрономических наблюдений, и в первую очередь — для измерения радиоизлучения межзвёздной среды нашей Галактики. Они не собирались искать реликтовое излучение, впрочем, и теория горячей Вселенной была им не знакома. Чтобы точность наблюдений была высока, Пензиасу и Уилсону следовало учесть все возможные помехи — в антенне, приёмниках, электрических цепях. Кроме того, возникновение радиоволн в атмосфере также может мешать измерениям. Следовало помнить, что радиоизлучает и поверхность нашей планеты… Настроив антенну телескопа и устранив несколько источников шумов, Пензиас и Уилсон, наконец, приступили к заключительным испытаниям. Сначала всё шло хорошо. Однако вскоре оказалось, что радиотелескоп почему-то регистрирует непонятный посторонний сигнал — шумовой фон постоянной интенсивности на волне 7,3 см, соответствующий излучению с температурой около 3,5 К. Предположив, что причина этого в какой-то технической оплошности, учёные разобрали антенну и обнаружили внутри… двух голубей, которые свили гнездо. Пензиас и Уилсон устранили "помеху” и опять провели испытания. К их удивлению, таинственный сигнал не исчез, только теперь он соответствовал излучению с температурой 3 К (видимо, 0,5 К приходилось на голубей вместе с гнездом).
Мало того, постепенно выяснилась ещё одна удивительная вещь — интенсивность загадочного радиошума не зависела ни от того, в какую область неба была направлена антенна, ни от времени суток и года! В результате случайных разговоров сведения о загадочном сигнале, принимаемом антенной Пензиаса и Уилсона, дошли до американского астронома Джеймса Пиблза, который независимо от других учёных предсказал существование "древнего” излучения с температурой около 10 К. Учёный встретился с Пензиасом и Уилсоном. После тщательного анализа и многочисленных расчётов исследователи пришли к выводу, что обнаруженное радиоизлучение невозможно отождествить ни с одним известным космическим источником. Скорее всего, это излучение — посланец тех далёких времён, когда Вселенная была очень горячей. Летом 1965 г. Пензиас и Уилсон опубликовали статью о своём открытии. Теперь астрономы точно установили, что излучение, приходящее из любой области неба и соответствующее температуре 3 К, — реликтовое. Оно осталось от эпохи разделения вещества и излучения и доказывало, что в начале расширения Вселенная была горяча. В 1978 г. Пензиас и Уилсон были удостоены за своё открытие Нобелевской премии.
Все ли загадки разгаданы
Теория Большого взрыва позволила астрономам во многом разобраться, представить постепенное развитие Вселенной, Но по-прежнему остава¬лось множество загадок. Некоторое время до начала наблюдаемого ныне расширения Вселенная находилась в каком-то первичном состоянии. Но что послужило "первоначаль¬ным толчком” к образованию Вселен¬ной? Или, как говорили древние греки, "кто толкнул небо и звёзды”? Другая загадка заключается в том фак¬те, что в момент рождения Вселенной как бы "ниоткуда” появились про¬странство, время, материя. И вообще, "куда” или "во что” она расширяется? Ведь если считать, что Вселенная — это всё, что существует, то вне её нет, и не может быть ни пустоты, ни про¬странства, ни времени, "в которые” она может расширяться. А извечный вопрос, который задают себе все лю¬ди, — что же было до начала Большого взрыва — не имеет ответа не только по¬тому, что наука не знает этого. Неизвестно, как ответить, что же было "до”, если времени вообще не сущест¬вовало… Можно долго спорить, отыскивая единственно правильный ответ на во¬прос о возникновении Вселенной, но вряд ли решение окажется однознач¬ным. Недаром астроном Стивен Хокинг в одном из интервью сказал: "Могут быть окончательные ответы, но если они есть, мне было бы очень жаль, если бы мы их нашли… это открытие не оставит ничего для тех, кто будет ис¬кать уже после меня… Мы нуждаемся в поиске”. В книге "Краткая история време¬ни” Хокинг говорит об окончательной теории Большого взрыва как о пости¬жении замысла самого Бога, что про¬тиворечит идее нескончаемого поиска этого знания. Возможно, прав был английский философ Бертран Рассел, сказавший: "Вселенная существует, вот и всё!”. Придётся пока повторять вслед за ним эту фразу и астрономам — по крайней мере, до тех пор, пока хотя бы часть загадок не будет разгадана…
Категория: Мои статьи | Добавил: MeRaBee (06.02.2011)
Просмотров: 692 | Теги: вселенная | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Наш опрос
Как вы думаете, будет ли астрономия наукой будущего
Всего ответов: 42
Мини-чат
Астрофото сайта
Новые фото сайта
Новые статьи
[26.01.2012][Мои статьи]
Абсолютное гравитационное поле часть 2 (0)
[26.01.2012][Мои статьи]
Абсолютное гравитационное поле (0)
[26.01.2012][Мои статьи]
Скопление и сверхскопление галактик (0)
[26.01.2012][Мои статьи]
Мост Эйнштейна-Розена (0)
[26.01.2012][Мои статьи]
Бозон Хиггса - частица Бога часть 4 (0)
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Жизнь сайта
Google
Google2
 
Copyright MyCorp © 2017 | Бесплатный хостинг uCoz