Пятница, 29.03.2024, 04:42
Приветствую Вас Гость

НОВОСТИ АСТРОНОМИИ ASTRO37ReG

Каталог статей

Главная » Статьи » Мои статьи

Солнечная система 2

МАЛЫЕ ТЕЛА СОЛНЕЧНОЙ СИСТЕМЫ


Поиск планет в Солнечной системе.

Не раз высказывались предположения о возможности существования планеты, более близкой к Солнцу, чем Меркурий. Леверье (1811–1877), предсказавший открытие Нептуна, исследовал аномалии в движении перигелия орбиты Меркурия и на основе этого предсказал существование внутри его орбиты новой неизвестной планеты. Вскоре появилось сообщение о ее наблюдении и планете даже присвоили имя – Вулкан. Но открытие не подтвердилось.

В 1977 американский астроном Коуэл открыл очень слабый объект, который окрестили «десятой планетой». Но для планеты объект оказался слишком мал (ок. 200 км). Его назвали Хироном и отнесли к астероидам, среди которых он был тогда самым далеким: афелий его орбиты удален на 18,9 а.е. и почти касается орбиты Урана, а перигелий лежит сразу за орбитой Сатурна на расстоянии 8,5 а.е. от Солнца. При наклоне орбиты всего 7° он действительно может близко подходить к Сатурну и Урану. Вычисления показывают, что такая орбита неустойчива: Хирон либо столкнется с планетой, либо будет выброшен из Солнечной системы.

Время от времени публикуются теоретические предсказания о существовании крупных планет за орбитой Плутона, но до сих пор они не подтверждались. Анализ кометных орбит показывает, что до расстояния 75 а.е. планет крупнее Земли за Плутоном нет. Однако вполне возможно существование в этой области большого количества малых планет, обнаружить которые не просто. Существование этого скопления занептуновых тел подозревалось уже давно и даже получило название – пояс Койпера, по имени известного американского исследователя планет. Тем не менее, обнаружить первые объекты в нем удалось лишь недавно. В 1992–1994 было открыто 17 малых планет за орбитой Нептуна. Из них 8 движутся на расстояниях 40–45 а.е. от Солнца, т.е. даже за орбитой Плутона.

Ввиду большой удаленности блеск этих объектов чрезвычайно слаб; для их поиска годятся лишь крупнейшие телескопы мира. Поэтому до сих пор систематически просмотрено всего около 3 квадратных градусов небесной сферы, т.е. 0,01% ее площади. Поэтому ожидается, что за орбитой Нептуна могут существовать десятки тысяч объектов, подобных обнаруженным, и миллионы более мелких, диаметром 5–10 км. Судя по оценкам, это скопление малых тел в сотни раз массивнее пояса астероидов, расположенного между Юпитером и Марсом, но уступает по массе гигантскому кометному облаку Оорта.

Объекты за Нептуном пока трудно отнести к какому-либо классу малых тел Солнечной системы – к астероидам или к ядрам комет. Новооткрытые тела имеют размер 100–200 км и довольно красную поверхность, что указывает на ее древний состав и возможное присутствие органических соединений. Тела «пояса Койпера» в последнее время обнаруживают весьма часто (к концу 1999 их открыто ок. 200). Некоторые планетологи считают, что Плутон было бы правильнее называть не «самой маленькой планетой», а «крупнейшим телом пояса Койпера».

ДРУГИЕ ПЛАНЕТНЫЕ СИСТЕМЫ

Из современных взглядов на формирование звезд следует, что рождение звезды солнечного типа должно сопровождаться образованием планетной системы. Даже если это касается только звезд, полностью подобных Солнцу (т.е. одиночных звезд спектрального класса G), то и в этом случае не менее 1% звезд Галактики (а это ок. 1 млрд. звезд) должны иметь планетные системы. Более детальный анализ показывает, что планеты могут быть у всех звезд холоднее спектрального класса F, причем даже входящих в двойные системы.

ОТ ЗЕМЛИ ДО ВСЕЛЕННОЙ. Каждый куб в миллиард раз больше предыдущего куба по объему. Первый охватывает систему Земля – Луна, следующий – Солнечную систему до Юпитера, затем всю Солнечную систему, ближайшие звезды, нашу Галактику и, наконец, соседние галактики.
ОТ ЗЕМЛИ ДО ВСЕЛЕННОЙ. Каждый куб в миллиард раз больше предыдущего куба по объему. Первый охватывает систему Земля – Луна, следующий – Солнечную систему до Юпитера, затем всю Солнечную систему, ближайшие звезды, нашу Галактику и, наконец, соседние галактики.

Действительно, в последние годы появились сообщения об открытии планет у других звезд. При этом сами планеты не видны: их присутствие обнаруживают по небольшому перемещению звезды, вызванному ее притяжением к планете. Орбитальное движение планеты вызывает «покачивания» звезды и периодическое изменение ее лучевой скорости, которое удается измерить по положению линий в спектре звезды (эффект Доплера). К концу 1999 сообщалось об открытии планет типа Юпитера у 30 звезд, среди которых 51 Peg, 70 Vir, 47 UMa, 55 Cnc, t Boo, u And, 16 Cyg и др. Все это близкие к Солнцу звезды, причем расстояние до ближайшей из них (Gliese 876) всего 15 св. лет. У двух радиопульсаров (PSR 1257+12 и PSR B1628–26) также обнаружены системы планет с массами порядка массы Земли. Заметить столь легкие планеты у нормальных звезд с помощью оптической техники пока не удается.

Вокруг каждой звезды можно указать экосферу, в которой температура поверхности планеты позволяет существовать жидкой воде. Экосфера Солнца простирается от 0,8 до 1,1 а.е. В ней находится Земля, но не попадают Венера (0,72 а.е.) и Марс (1,52 а.е.). Вероятно, в любой планетной системе в экосферу попадает не более 1–2 планет, на которых условия благоприятствуют жизни.

ДИНАМИКА ОРБИТАЛЬНОГО ДВИЖЕНИЯ

Движение планет с высокой точностью подчиняется трем законам И.Кеплера (1571–1630), выведенными им из наблюдений:

1) Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.

2) Радиус-вектор, соединяющий Солнце и планету, за равные промежутки времени движения планеты по орбите заметает равные площади.

3) Квадрат орбитального периода пропорционален кубу большой полуоси эллиптической орбиты.

Второй закон Кеплера прямо следует из закона сохранения момента импульса и является наиболее общим из трех. Ньютон установил, что первый закон Кеплера справедлив, если сила притяжения между двумя телами обратно пропорциональна квадрату расстояния между ними, а третий закон – если эта сила к тому же пропорциональна массам тел. В 1873 Дж.Бертран доказал, что вообще только в двух случаях тела не будут двигаться одно вокруг другого по спирали: если они притягиваются по закону обратных квадратов Ньютона или по закону прямой пропорциональности Гука (описывающему упругость пружин). Замечательное свойство Солнечной системы состоит в том, что масса центральной звезды гораздо больше массы любой из планет, поэтому движение каждого члена планетной системы можно с высокой точностью рассчитать в рамках задачи о движении двух взаимно тяготеющих тел – Солнца и единственной планеты рядом с ним. Ее математическое решение известно: если скорость планеты не слишком велика, то она движется по замкнутой периодической орбите, которую можно точно вычислить.

Задача о движении более чем двух тел, в общем случае называемая «проблемой N тел», гораздо сложнее из-за их хаотического движения по незамкнутым орбитам. Эта хаотичность орбит принципиально важна и позволяет понять, например, как метеориты попадают из пояса астероидов на Землю. См. также КЕПЛЕРА ЗАКОНЫ;НЕБЕСНАЯ МЕХАНИКА;ОРБИТА.

В 1867 Д.Кирквуд первым отметил, что пустые места («люки») в поясе астероидов расположены на таких расстояниях от Солнца, где среднее движение находится в соизмеримости (в целочисленном отношении) с движением Юпитера. Иными словами, астероиды избегают орбит, на которых период их обращения вокруг Солнца был бы кратен периоду обращения Юпитера. Два крупнейших люка Кирквуда приходятся на соизмеримости 3:1 и 2:1. Однако вблизи соизмеримости 3:2 наблюдается избыток астероидов, объединенных по этому признаку в группу Гильды. Существует также избыток астероидов группы Троянцев у соизмеримости 1:1, движущихся по орбите Юпитера на 60° впереди и 60° позади него. Ситуация с Троянцами понятна – они захвачены вблизи устойчивых точек Лагранжа (L4 и L5) на орбите Юпитера, но как объяснить люки Кирквуда и группу Гильды?

Если бы на соизмеримостях были только люки, то можно было бы принять простое объяснение, предложенное самим Кирквудом, что астероиды выброшены из резонансных областей периодическим влиянием Юпитера. Но сейчас такая картина представляется слишком простой. Численные расчеты показали, что хаотические орбиты пронизывают области пространства вблизи резонанса 3:1 и что попавшие в эту область фрагменты астероидов изменяют свои орбиты с круговых на вытянутые эллиптические, регулярно приводящие их в центральную часть Солнечной системы. На таких пересекающих планетные пути орбитах метеороиды живут недолго (лишь несколько миллионов лет) перед тем, как врезаться в Марс или Землю, а при небольшом промахе – оказаться выброшенными на периферию Солнечной системы. Итак, главным источником падающих на Землю метеоритов служат люки Кирквуда, через которые проходят хаотические орбиты фрагментов астероидов.

Разумеется, в Солнечной системе есть много примеров высокоупорядоченных резонансных движений. Именно так движутся близкие к планетам спутники, например Луна, всегда обращенная одним и тем же полушарием к Земле, поскольку ее орбитальный период совпадает с осевым. Пример еще более высокой синхронизации дает система Плутон – Харон, в которой не только на спутнике, но и на планете «день равен месяцу». Промежуточный характер имеет движение Меркурия, осевое вращение и орбитальное обращение которого находятся в резонансном соотношении 3:2. Однако не все тела ведут себя так просто: например, у несферического Гипериона под действием притяжения Сатурна ось вращения хаотически переворачивается.

Эволюция орбит спутников происходит под влиянием нескольких факторов. Поскольку планеты и спутники – не точечные массы, а протяженные объекты, и, кроме того, сила тяготения зависит от расстояния, различные части тела спутника, удаленные от планеты на разное расстояние, притягиваются к ней по-разному; это же справедливо и для притяжения, действующего со стороны спутника на планету. Такое различие сил вызывает морские приливы и отливы, а синхронно вращающимся спутникам придает немного сплющенную форму. Спутник и планета вызывают друг у друга приливные деформации, а это влияет на их орбитальное движение. Резонанс средних движений 4:2:1 у спутников Юпитера Ио, Европы и Ганимеда, впервые подробно изученный Лапласом в его Небесной механике (т. 4, 1805), называют резонансом Лапласа. Всего за несколько дней до подлета «Вояджера-1» к Юпитеру, 2 марта 1979, астрономы Пеале, Кассен и Рейнольдс опубликовали работу «Плавление Ио под действием приливной диссипации», в которой предсказали активный вулканизм на этом спутнике из-за его ведущей роли в поддержании резонанса 4:2:1. «Вояджер-1» действительно обнаружил на Ио активные вулканы, настолько мощные, что на снимках поверхности спутника не видно ни одного метеоритного кратера: так быстро покрывается его поверхность продуктами извержений.

ФОРМИРОВАНИЕ СОЛНЕЧНОЙ СИСТЕМЫ

Вопрос о том, как образовалась Солнечная система, пожалуй, наиболее трудный в планетологии. Для ответа на него у нас пока мало данных, которые помогли бы восстановить протекавшие в ту далекую эпоху сложные физические и химические процессы. Теория формирования Солнечной системы должна объяснить множество фактов, включая ее механическое состояние, химический состав и данные изотопной хронологии. При этом желательно опираться на реальные явления, наблюдаемые вблизи формирующихся и молодых звезд.

Механическое состояние.

Планеты обращаются вокруг Солнца в одном направлении, по почти круговым орбитам, лежащим почти в одной плоскости. Большинство из них вращается вокруг своей оси в том же направлении, что и Солнце. Все это указывает, что предшественником Солнечной системы был вращающийся диск, который естественно образуется при сжатии самогравитирующей системы с сохранением момента импульса и следующим из этого увеличением угловой скорости. (Момент импульса, или угловой момент планеты, – это произведение ее массы на расстояние от Солнца и на орбитальную скорость. Момент Солнца определяется его осевым вращением и приблизительно равен произведению массы на радиус и на скорость вращения; осевые моменты планет пренебрежимо малы.)

Солнце содержит в себе 99% массы Солнечной системы, но только ок. 1% ее момента импульса. Теория должна объяснить, почему большая часть массы системы сосредоточена в Солнце, а подавляющая часть момента импульса – во внешних планетах. Имеющиеся теоретические модели формирования Солнечной системы указывают, что вначале Солнце вращалось значительно быстрее, чем сейчас. Затем момент импульса от молодого Солнца передался внешним частям Солнечной системы; астрономы полагают, что гравитационные и магнитные силы затормозили вращение Солнца и ускорили движение планет.

Уже два века известно приблизительное правило регулярного распределения планетных расстояний от Солнца (правило Тициуса – Боде), но объяснения ему нет. В системах спутников внешних планет прослеживаются те же закономерности, что и в планетной системе в целом; вероятно, процессы их формирования имели много общего.См. такжеБОДЕ ЗАКОН.

Химический состав.

В Солнечной системе наблюдается сильный градиент (различие) химического состава: близкие к Солнцу планеты и спутники состоят из тугоплавких материалов, а в составе далеких тел много летучих элементов. Это означает, что в эпоху формирования Солнечной системы существовал большой градиент температуры. Современные астрофизические модели химической конденсации предполагают, что исходный состав протопланетного облака был близок к составу межзвездной среды и Солнца: по массе до 75% водорода, до 25% гелия и менее 1% всех прочих элементов. Эти модели успешно объясняют наблюдаемые вариации химического состава в Солнечной системе.

О химическом составе далеких объектов можно судить на основании значения их средней плотности, а также по спектрам их поверхности и атмосферы. Значительно точнее это удалось бы сделать путем анализа образцов планетного вещества, но пока у нас есть только образцы с Луны и метеориты. Исследуя метеориты, мы начинаем понимать химические процессы в первичной туманности. Однако процесс агломерации крупных планет из мелких частиц пока остается неясным.

Изотопные данные.

Изотопный состав метеоритов указывает, что формирование Солнечной системы происходило 4,6 ± 0,1 млрд. лет назад и длилось не более 100 млн. лет. Аномалии изотопов неона, кислорода, магния, алюминия и др. элементов свидетельствуют, что в процессе коллапса межзвездного облака, породившего Солнечную систему, в него попали продукты взрыва близкой сверхновой звезды. См. также ИЗОТОПЫ; СВЕРХНОВАЯ ЗВЕЗДА.

Формирование звезд.

Звезды рождаются в процессе коллапса (сжатия) межзвездных газо-пылевых облаков. Детально этот процесс пока не исследован. Имеются наблюдательные факты в пользу того, что ударные волны от взрывов сверхновых звезд могут сжимать межзвездное вещество и стимулировать коллапс облаков в звезды. См. такжеГРАВИТАЦИОННЫЙ КОЛЛАПС.

Перед тем как молодая звезда достигнет стабильного состояния, она проходит стадию гравитационного сжатия из протозвездной туманности. Основные сведения об этом этапе эволюции звезд получают, изучая молодые звезды типа Т Тельца. По-видимому, эти звезды еще находятся в состоянии сжатия и их возраст не превышает 1 млн. лет. Обычно их массы от 0,2 до 2 масс Солнца. У них видны признаки сильной магнитной активности. В спектрах некоторых звезд типа Т Тельца присутствуют запрещенные линии, которые возникают только в газе низкой плотности; вероятно, это остатки протозвездной туманности, окружающие звезду. Для звезд типа Т Тельца характерны быстрые флуктуации ультрафиолетового и рентгеновского излучения. У многих из них наблюдаются мощное инфракрасное излучение и спектральные линии кремния – это указывает, что звезды окружены пылевыми облаками. Наконец, звезды типа Т Тельца обладают мощным звездным ветром. Считается, что в ранний период своей эволюции Солнце также проходило через стадию Т Тельца, и что именно в этот период летучие элементы были вытеснены из внутренних областей Солнечной системы.

Некоторые формирующиеся звезды умеренной массы демонстрируют сильный рост светимости и сброс оболочки за время менее года. Такие явления называют вспышками типа FU Ориона. По крайней мере однажды такую вспышку испытала звезда типа Т Тельца. Считается, что большинство молодых звезд проходит через стадию вспышек типа FU Ориона. Причину вспышки многие видят в том, что время от времени возрастает темп аккреции на молодую звезду вещества из окружающего ее газо-пылевого диска. Если в ранний период эволюции Солнце также испытало одну или несколько вспышек типа FU Ориона, это должно было сильно повлиять на летучие вещества в центральной части Солнечной системы.

Наблюдения и расчеты показывают, что в окрестности формирующейся звезды всегда есть остатки протозвездного вещества. Из него может сформироваться звезда-компаньон или планетная система. Действительно, многие звезды образуют двойные и кратные системы. Но если масса компаньона не превосходит 1% массы Солнца (10 масс Юпитера), то температура в его ядре никогда не достигнет значения, необходимого для протекания термоядерных реакций. Такое небесное тело называют планетой.

Теории формирования.

Научные теории формирования Солнечной системы можно разделить на три категории: приливные, аккреционные и небулярные. Последние привлекают сейчас наибольший интерес.

Приливная теория, по-видимому, впервые предложенная Бюффоном (1707–1788), непосредственно не связывает между собой формирование звезды и планет. Предполагается, что пролетевшая мимо Солнца другая звезда путем приливного взаимодействия вытянула из него (или из себя) струю вещества, из которого сформировались планеты. Эта идея сталкивается с множеством физических проблем; например, выброшенное звездой горячее вещество должно распыляться, а не конденсироваться. Сейчас приливная теория непопулярна, поскольку не может объяснить механические особенности Солнечной системы и представляет ее рождение как случайное и крайне редкое событие.

Аккреционная теория предполагает, что молодое Солнце захватило вещество будущей планетной системы, пролетая сквозь плотное межзвездное облако. Действительно, молодые звезды обычно встречаются вблизи крупных межзвездных облаков. Однако в рамках аккреционной теории трудно объяснить градиент химического состава в планетной системе.

Наиболее разработана и общепринята сейчас небулярная гипотеза, предложенная Кантом в конце 18 в. Ее основная идея состоит в том, что Солнце и планеты формировались одновременно из единого вращающегося облака. Сжимаясь, оно превратилось в диск, в центре которого образовалось Солнце, а на периферии – планеты. Отметим, что эта идея отличается от гипотезы Лапласа, согласно которой сначала из облака сформировалось Солнце, а затем по мере его сжатия центробежная сила отрывала с экватора газовые кольца, сконденсировавшиеся позже в планеты. Гипотеза Лапласа сталкивается с трудностями физического характера, которые не удается преодолеть уже 200 лет.

Наиболее удачный современный вариант небулярной теории создал А.Камерон с коллегами. В их модели протопланетная туманность была примерно вдвое массивнее нынешней планетной системы. В течение первых 100 млн. лет формировавшееся Солнце активно выбрасывало из нее вещество. Такое поведение характерно для молодых звезд, которые по имени прототипа называют звездами типа Т Тельца. Распределение давления и температуры вещества туманности в модели Камерона хорошо согласуется с градиентом химического состава Солнечной системы.

Таким образом, наиболее вероятно, что Солнце и планеты сформировались из единого сжимающегося облака. В центральной его части, где плотность и температура были выше, сохранились только тугоплавкие вещества, а на периферии сохранились и летучие; этим объясняется градиент химического состава. В соответствии с этой моделью формирование планетной системы должно сопровождать раннюю эволюцию всех звезд типа Солнца.

Рост планет.

Существует множество сценариев роста планет. Возможно, планеты сформировались в результате случайных столкновений и слипаний небольших тел, названных планетезималями. Но, может быть, мелкие тела объединялись в более крупные сразу большими группами в результате гравитационной неустойчивости. Не ясно, происходила ли аккумуляция планет в газовой или безгазовой среде. В газовой туманности перепады температуры сглаживаются, но когда часть газа конденсируется в пылинки, а остатки газа выметает звездный ветер, прозрачность туманности резко возрастает, и в системе возникает сильный градиент температуры. До сих пор не вполне ясно, каковы характерные времена конденсации газа в пылинки, аккумуляции пылинок в планетезимали и аккреции планетезималей в планеты и их спутники.

ЖИЗНЬ В СОЛНЕЧНОЙ СИСТЕМЕ

Высказывались предположения, что жизнь в Солнечной системе когда-то существовала за пределом Земли, а может быть, существует и сейчас. Появление космической техники позволило приступить к прямой проверке этой гипотезы. Меркурий оказался слишком горяч и лишенным атмосферы и воды. На Венере тоже очень жарко – на ее поверхности плавится свинец. Возможность жизни в верхнем слое облаков Венеры, где условия гораздо мягче, пока не более чем фантазия. Луна и астероиды выглядят совершенно стерильными.

Большие надежды возлагались на Марс. Замеченные в телескоп 100 лет назад системы тонких прямых линий – «каналов» – дали тогда повод говорить об искусственных ирригационных сооружениях на поверхности Марса. Но теперь мы знаем, что условия на Марсе неблагоприятны для жизни: холодно, сухо, очень разреженный воздух и, как следствие, сильное ультрафиолетовое излучение Солнца, стерилизующее поверхность планеты. Приборы посадочных блоков «Викингов» не обнаружили органического вещества в грунте Марса.

Правда, есть признаки того, что климат Марса существенно менялся и, возможно, когда-то был более благоприятным для жизни. Известно, что в далеком прошлом на поверхности Марса была вода, поскольку на детальных изображениях планеты видны следы водной эрозии, напоминающие овраги и сухие русла рек. Долговременные вариации марсианского климата могут быть связаны с изменением наклона полярной оси. При небольшом повышении температуры планеты атмосфера может стать в 100 раз плотнее (за счет испарения льдов). Таким образом, возможно, жизнь на Марсе когда-то существовала. Ответить на этот вопрос мы сможем только после детального изучения образцов марсианского грунта. Но их доставка на Землю – сложная задача.

К счастью, имеются веские доказательства, что из тысяч найденных на Земле метеоритов, по крайней мере, 12 прилетело с Марса. Их называют SNC-метеоритами, поскольку первые из них нашли вблизи населенных пунктов Shergotty (Шерготти, Индия), Nakhla (Накла, Египет) и Chassigny (Шассиньи, Франция). Найденный в Антарктиде метеорит ALH 84001 значительно старше остальных и содержит полициклические ароматические углеводороды, возможно, имеющие биологическое происхождение. Считается, что он попал на Землю с Марса, поскольку соотношение изотопов кислорода в нем не такое, как в земных породах или не-SNC-метеоритах, а такое, как в метеорите EETA 79001, содержащем стекла с включениями пузырьков, в которых состав благородных газов отличается от земного, но соответствует атмосфере Марса.

Категория: Мои статьи | Добавил: MeRaBee (07.02.2011)
Просмотров: 1829 | Теги: солнечная, система | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Наш опрос
Нужна ли астрономия в школе?
Всего ответов: 38
Мини-чат
Астрофото сайта
Новые фото сайта
Новые статьи
[26.01.2012][Мои статьи]
Абсолютное гравитационное поле часть 2 (0)
[26.01.2012][Мои статьи]
Абсолютное гравитационное поле (0)
[26.01.2012][Мои статьи]
Скопление и сверхскопление галактик (0)
[26.01.2012][Мои статьи]
Мост Эйнштейна-Розена (0)
[26.01.2012][Мои статьи]
Бозон Хиггса - частица Бога часть 4 (0)
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Жизнь сайта
Google
Google2
 
Copyright MyCorp © 2024 | Бесплатный хостинг uCoz